检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学电信学院电子系,西安710049
出 处:《物理学报》2004年第5期1583-1587,共5页Acta Physica Sinica
摘 要:基于小波变换的特征信息的提取和神经网络的自学习能力研究了薄膜场发射的特性 ,结合阴极薄膜场发射的特点 ,建立了薄膜场发射开启电场的小波神经网络预测模型 .并用金刚石薄膜场发射开启电场数据进行了验证 ,结果表明该模型预测的相对误差小于 1 30 % .这一结论预示着小波神经网络是一种研究薄膜场发射特性的方法 .In this paper, characteristics of field emission from thin films have been studied based on extracting features of wavelet transforms from experimental data and neural networks self-learning,and the forecasting model of wavelet neural networks in combination with the characteristics of cold cathode materials has been established. The data of diamond thin film on threshold electric field in field emission is used to test this model, and the results show that the absolute value of the relative error of the model is within 1.30%. This result implies that the wavelet neural network is a useful tool for studying characteristics of field emission from thin films.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15