基于故障树和神经网络模型的提升机故障诊断专家系统  被引量:6

search on Fault Diagnostic Expert System for Mine Hoist Based onFault Tree and Neural Network

在线阅读下载全文

作  者:周瑾[1] 肖兴明[2] 

机构地区:[1]南京航空航天大学机电学院 [2]中国矿业大学机电与材料工程学院

出  处:《矿山机械》2004年第5期39-41,3-5,共3页Mining & Processing Equipment

摘  要:根据提升机故障源多、诊断复杂的特点,提出了可提高设备使用率、运行可靠安全的故障诊断专家系统。<abstract>cording to the fault characteristics of the mine hoist, a proper intelligent fault diagnostic expert system is proposed, the paper presents a fault diagnostic method based on fault tree and neural network model. The knowledge representation adopts the shallow and deep knowledge integrated technology, and it is also based upon fault tree and is based on integrating of frame, rule, neural as well. The inference engine is built in forward and backward combined reasoning strategy, and depth-first searching theory. It is proved by practice that the expert system can increase the safety, reliability and efficiency of the mine hoist efficiently.

关 键 词:故障树 矿井提升机 神经网络模型 故障诊断 

分 类 号:TD534[矿业工程—矿山机电] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象