检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]许昌学院数学与统计学院,河南许昌
出 处:《应用数学进展》2015年第2期105-111,共7页Advances in Applied Mathematics
基 金:许昌学院青年骨干教师项目。
摘 要:本文主要提出了非线性Sine-Gordon方程的H1-Galerkin非协调混合元方法的全离散逼近格式。利用双线性元和一个非协调元的性质及插值理论,分别得到了原始变量和流量在H1模和H(div,Ω)模下具有O(h2+τ2)阶的超逼近性质。In this paper, an H1-Galerkin nonconforming mixed finite element method is mainly proposed for Sine-Gordon equations under fully-discrete scheme. By use of the properties of bilinear element and a nonconforming element and interpolation theory, the supercloseness properties are derived for the original variable in H1 norm and the flux variable in H(div,Ω) norm with order O(h2+τ2) , respectively.
关 键 词:Sine-Gordan方程 H1-Galerkin混合元方法 全离散 超逼近
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7