检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工业大学理学院,天津 [2]河北工业大学经济管理学院,天津
出 处:《应用数学进展》2017年第9期1135-1145,共11页Advances in Applied Mathematics
摘 要:在传统时间序列方法的基础上,引入非线性的BP神经网络模型,建立广义自回归条件异方差模型与BP神经网络模型相结合的组合模型对互联货币基金的收益率进行预测。以平均绝对误差(MAE)、均方误差(MSE)、平均误差(ME)、定向精度(DA)四个指标为检验标准对三个模型进行预测精度的比较。经实证分析,BPNN-GARCH组合模型对于互联网货币基金收益率的预测具有更高的准确性。On the basis of the traditional time series method, a nonlinear BP neural network model is intro-duced, and a combined model of generalized autoregressive conditional heteroskedasticity model and BP neural network model is established to predict the yield of the Internet monetary fund. The prediction accuracy of three models was compared with four indexes of MAE, MSE, ME and DA. Based on the empirical analysis, the BPNN-GARCH combined model has higher accuracy for the forecast of the Internet monetary fund yield.
关 键 词:BP神经网络 互联网货币基金 BPNN-GARCH模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28