检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军战略支援部队信息工程大学,河南洛阳 [2]郑州审计中心,河南郑州 [3]密码科学技术国家重点实验室,北京
出 处:《应用数学进展》2018年第10期1263-1274,共12页Advances in Applied Mathematics
基 金:国家自然科学基金项目(U1204602);数学工程与先进计算国家重点实验室开放课题项目(2013A14)。
摘 要:基于数学难解问题的公钥体制加密算法面临着计算机计算能力进步的挑战,如何优化现有公钥加密理论基础、从数学角度分析验证抗量子密码的安全性与实用性,进而推进密码学加密技术的进步,一直是密码学与计算机科学的主要攻坚方向。本文通过回顾大数分解、对数难解等数学难题分析公钥密码的数学基础,同时结合科研动态从数学理论出发验证抗量子公钥密码体制的可靠性。这对有效应对即将到来的量子计算对公钥密码体制的威胁具有现实意义。The public key system encryption algorithm based on the difficult problem of mathematics is faced with the challenge of the improving computing power of computers. How to keep the safety of mathematical problems and optimize the theoretical basis of the existing public key encryption, analyze and verify the reliability and practicability of quantum-resistant cryptography from the perspective of mathematics, and further advance encryption technology have been an important research direction in cryptography and computer science. By reviewing mathematical problems such as integer factorization and the difficulty of solving the discrete logarithm problem, and by following research trends, this paper analyzes the mathematical foundation of public key cryptography, and verifies the reliability of quantum-resistant cryptography. This is of practical significance to effectively cope with the threat of the forthcoming quantum computing to the public key cryptosystem.
关 键 词:公钥加密 大数分解 离散对数 最短格矢问题 子集和问题
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.50.218