检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓生文
机构地区:[1]兰州交通大学数理学院,甘肃 兰州
出 处:《应用数学进展》2020年第4期501-508,共8页Advances in Applied Mathematics
摘 要:本文主要分析一个随机参数激励下四维高速转子系统的非线性随机稳定性及随机Hopf分岔。转子系统动力学的研究在理论和实际操作也有了很大的进步。将系统受到的内部因素与外部随机风力影响用高斯色噪声代替。运用随机平均原理,将拟哈密顿系统收敛于一个一维伊藤随机扩散过程,然后运用最大李雅普诺夫指数法,来判断系统的局部稳定性,得到系统局部稳定的条件。然后通过FPK方程之解,即平稳概率密度来模拟系统发生Hopf分岔。This paper mainly analyzes the nonlinear random stability and random Hopf bifurcation of a four-dimensional high-speed rotor system under a random parameter excitation. The study of rotor system dynamics has made great progress in theory and practice. The system is affected by internal factors and external random wind and replaced by Gaussian color noise. By using the principle of random average, the quasi-hamiltonian system is convergent to a one-dimensional random ITO diffusion process, and then the maximum lyapunov exponential method is used to judge the local stability of the system, and the conditions for the local stability of the system are obtained. Then the Hopf bifurcation is simulated by the solution of FPK equation, namely the stationary probability density.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171