检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学数学学院,辽宁 大连
出 处:《应用数学进展》2021年第1期143-149,共7页Advances in Applied Mathematics
摘 要:将边界无单元法应用于求解地下水非均质承压稳定流问题,给出了用边界无单元法求解地下水非均质承压稳定流问题的方法。将研究区域划分成若干个子区,在每个子区将渗透系数近似表达成常数,从边界积分方程出发,利用改进的移动最小二乘法构造水头近似函数和流量近似函数,在边界节点处生成线性方程组。通过数值算例反映出边界无单元法相较于边界元法具有较高的计算精度。The boundary element-free method is applied to solve the problem of groundwater heterogeneous confined steady flow, and a method for solving the problem of groundwater heterogeneous confined steady flow is given. The study area is divided into several sub-regions, and the permeability coefficient is approximately expressed as the component constant in each sub-region. Starting from the boundary integral equation, the improved moving least squares method is used to construct the water head approximation function and the flow approximation function, and the linear equations are generated at the boundary nodes. The numerical examples show that the boundary element-free method has higher calculation accuracy than the boundary element method.
关 键 词:非均质承压稳定流 边界无单元法 改进的移动最小二乘法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15