检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学理学院,上海
出 处:《应用数学进展》2021年第3期753-762,共10页Advances in Applied Mathematics
摘 要:针对粒子群算法(PSO)容易陷入局部最优值、收敛精度低等缺陷,提出一种新的带分布式自适应时延的粒子群算法(PSO-DW)。改进的算法主要在RODDPSO算法的基础上考虑时延的时变性和种群的进化状态,以平衡算法的全局搜索和局部搜索能力,降低早熟收敛的可能性,提高算法的收敛速度和精度。主要思想:1) 在引入了分布式时延的速度更新公式中,每个时延项配以自适应权重,2) 引入通过当前状态和概率转移矩阵预测下一进化状态的预测机制,3) 分布式时延的强度因子由预测状态所确定。在九个基准函数上与四个算法作对比的实验结果表明,改进后的算法在寻优质量、稳定性、收敛速度等方面更具优越性。A new particle swarm optimization algorithm (PSO) with distributed adaptively weighted delays (PSO-DW) has been proposed to overcome the defects of the PSO algorithm, such as falling into local optimal value, low convergence accuracy. Based on the RODDPSO algorithm, the improved algorithm further considers the time-varying delays and the evolutionary states of the population, so that it can balance the global search and local search ability of the algorithm, reduce the possibility of premature convergence, and improve the convergence speed and accuracy of the algorithm. The main ideas are: 1) each delay is equipped with adaptive weight in the velocity update formula;2) prediction mechanism of the next evolutionary state has been introduced by the current state and probability transfer matrix;3) intensity factor of the distributed delay is determined by the prediction state. The experimental results show that the improved algorithm has more advantages in optimizing quality, stability and convergence speed by comparing with four algorithms on nine benchmark functions.
关 键 词:粒子群优化(PSO) 分布式时延 进化因子 权重
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222