检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁夏大学物理与电子电气工程学院,宁夏 银川 [2]宁夏大学数学统计学院,宁夏 银川
出 处:《应用数学进展》2021年第6期1871-1879,共9页Advances in Applied Mathematics
摘 要:目前新型冠状病毒肺炎(COVID-19)仍在全球大面积蔓延,对公众健康构成严重威胁,疫情防控形式依然严峻。通过构建合理的数学模型,可以科学地预测传染病在不同地区的发展趋势并对发展阶段进行合理的评估,具有重要的现实意义。本文建立了考虑死亡因素和不同时段接触数的SEIR模型,对模型作了平衡点的稳定性分析,并利用美国纽约州疫情数据进行验证,模型预测结果与实际情况吻合的很好,表明模型具有较好的预测能力。此外,根据基本再生数R0的特点,给出了一个判断疫情能否稳定的判据,通过降低人口流动以及人群的接触率可以较好地控制疫情。Coronavirus disease 2019 (COVID-19) is spreading in large areas worldwide and poses a serious public health risk. Epidemic prevention is still a great challenge. By using a reasonable mathematical model, we can scientifically predict the trend of infectious diseases in different regions and make reasonable assessment of the development stage, which is of great significance. In this paper, a SEIR model for COVID-19 dynamics considering death factors and the number of contacts in different periods is presented. The stability of the equilibrium point of the model is analyzed and verified by using the epidemic data of New York state of the United States. The prediction results of the model are in good agreement with the actual situation, indicating that the model has good prediction ability. In addition, according to the characteristics of the basic reproduction number R0, we give a criterion to judge whether the epidemic situation is stable. The epidemic situation can be well controlled by reducing population mobility and contact rate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198