检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学进展》2021年第12期4542-4553,共12页Advances in Applied Mathematics
摘 要:本文利用间断Petrov-Galerkin方法求解双曲守恒律方程,使用非代数多项式有限元空间(指数多项式基函数)来构造逼近函数进行空间离散,用SSP Runge-Kutta方法进行时间离散,TVB型minmod限制器用来抑制间断解数值计算时的数值振荡。通过对典型数值算例的计算,并与代数多项式间断Petrov-Galerkin方法的对比,结果显示本文的数值方法有良好的数值计算效果和数值稳定性。In this paper, a discontinuous Petrov-Galerkin method is used to solve the hyperbolic conservation laws. A non-algebraic polynomial finite element space, based on exponential polynomials, is used to construct the approximation function for spatial discretization. The SSP Runge-Kutta method is used for time discretization. The TVB minmod limiter is used to suppress the numerical oscillation in the numerical calculation of discontinuous solutions. Through the calculation of typical numerical examples and the comparison with algebraic polynomial discontinuous Petrov-Galerkin method, the results show that the numerical method in this paper has good numerical effect and numerical stability.
关 键 词:双曲守恒律 间断Petrov-Galerkin方法 代数多项式基 指数多项式基
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112