检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华大学理学院,四川 成都
出 处:《应用数学进展》2023年第6期2958-2964,共7页Advances in Applied Mathematics
摘 要:T. Bag和S. K. Samanta于2003年建立了模糊赋范线性空间,并研究了模糊范数导出的α-范数a(∈(0,1))性质,以及点列按照α-范数收敛与按照模糊范数收敛的关系。本文给出了由模糊范数导出的1-范数的概念,研究了点列按1-范数收敛与按模糊范数收敛的关系。同时,研究了按1-范数引入的逼近问题,得到了按1-范数定义的存在性集与模糊闭集之间的关系。T. Bag and S. K. Samanta established the fuzzy norm linear space in 2003, studied the properties of α-norm derived by fuzzy norm, and discussed the relationship between sequence convergence in sense of α-norm and convergence in sense of fuzzy norm. In this paper, we give the concept of 1-norm derived from fuzzy norm and study the relationship between convergence of sequence in sense of 1-norm and convergence in sense of fuzzy norm. Meanwhile, the approximation problem introduced by 1-norm is discussed, and the relationship between the 1-existence set and the fuzzy closed set defined by 1-norm is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.254.100