检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学数学与计算科学学院, 广西 桂林
出 处:《应用数学进展》2023年第8期3665-3683,共19页Advances in Applied Mathematics
摘 要:稀疏逻辑回归是一种具有稀疏约束的逻辑回归模型,它广泛应用于神经网络、 机器学习和生物信 息领域。 本文基于近似l1-范数的思想,采用六个光滑函数对稀疏逻辑回归模型中的l1- 范数的每个 分量进行近似,将问题转换为光滑化无约束最小化问题,然后设计共辄梯度法求解近似模型井给 出收敛性分析。 最后通过数值实验与己知求解稀疏逻辑回归模型的四个算法进行比较,得出共辄 梯度法求解稀疏逻辑回归问题是有效的。Sparse logistic regression is a kind of logistic regression model with sparse constraints, which is widely used in the fields of neural networks, machine learning, and bioinfor- matics. In this paper, based on the idea of approximating the l1 norm, six smooth functions are used to approximate each component of the l1 norm in the sparse logis- tic regression model, and the problem is transformed into a smoothed unconstrained minimization problem, then a conjugate gradient method is designed to solve the approximated model and the convergence analysis is given. Finally, numerical exper- iments are conducted to compare with four known algorithms for solving the sparse logistic regression model, and it is concluded that the conjugate gradient method is effective in solving the sparse logistic regression problem.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49