检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭海花
出 处:《应用数学进展》2023年第10期4123-4132,共10页Advances in Applied Mathematics
摘 要:本文研究了一类时间分数阶偏微分方程的数值解。首先,本文利用高阶加权本质无振荡(WENO)格式对空间变量进行离散化,使其在空间方向上达到高阶精度,因此得到一个只跟时间有关的常微分方程。接着在时间方向上应用指数和近似(SOE)时间分数阶Caputo导数,以减少内存和复杂度,达到快速计算的目的。其次,从理论上分析了WENO方法的高阶收敛性。最后通过数值实验验证了该方法的高阶精度。同时,应用该方法去数值求解含间断解的方程可以在非光滑区域保持本质无振荡,验证了该方法的有效性。This paper investigates the numerical solution of a class of partial differential equations of time- fractional order. Firstly, the paper discretizes the spatial variables using the higher order weighted essential no oscillation (WENO) scheme to achieve high accuracy in the spatial direction, thus ob-taining an ordinary differential equation related only to time. Then, the exponential sum approxi-mation (SOE) to the time-fractional order Caputo derivative is applied in the time direction to re-duce memory and complexity for fast computation. Next, the higher-order convergence of the WENO method is analyzed theoretically. Finally, the higher-order accuracy of the method is verified by numerical experiments. Meanwhile, applying the method to solve the equations containing inter-rupted solutions numerically is found to maintain the essence of non-oscillation in the non- smooth region, which verifies the effectiveness of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198