检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北石油大学数学与统计学院应用数学系,黑龙江 大庆
出 处:《应用数学进展》2023年第11期4834-4853,共20页Advances in Applied Mathematics
摘 要:本文研究了捕食者患病且具有分布时滞感染率的捕食–食饵模型。文中假设疾病仅在捕食者种群中流行,易感捕食者和患病捕食者皆以食饵为唯一的食物来源。文中运用单调动力系统理论和构造Lyapunov泛函相结合的方法得到了模型中所有边界平衡点的全局稳定性,同时运用一致持久生存理论得到了患病捕食者一致持久生存的充分条件。最后,文末数值模拟的部分不仅验证了定性理论分析结果的正确性,而且就同一模型针对感染率大小不同以及疾病潜伏期长短不同的情形分别进行了敏感度分析。In this paper, we investigate a predator-prey model in which predators are infected and have dis-tributed time-lagged infection rates. It is assumed that the disease is endemic only in the predator population and that both susceptible and infected predator’s use prey as their only food source. The global stability of all boundary equilibrium points in the model is obtained using a combination of monotone dynamical systems theory and the construction of Lyapunov generalized functions, and a sufficient condition for the consistent persistence of the infected predator is obtained using the theory of consistent persistence. Finally, the numerical simulation section at the end of the paper not only verifies the correctness of the qualitative theoretical results, but also analyzes the sensitiv-ity of the same model to different infection rates and disease incubation periods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222