检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张瑜洁
机构地区:[1]辽宁师范大学数学学院,辽宁 大连
出 处:《应用数学进展》2024年第2期653-660,共8页Advances in Applied Mathematics
摘 要:图的交叉数是图论中一个重要的部分。近百年来,国内外很多学者都对图的交叉数这一问题进行研究,但由于证明难度较大,国内外关于图的交叉数领域的研究进展缓慢。本文主要对玫瑰花窗图R3k(1,3)的交叉数进行研究。首先根据好的画法得到R3k(1,3)的交叉数上界;再将R3k(1,3)的边集分成边不相交的3k组,利用反证法和数学归纳法,讨论所有可能情况,证得R3k(1,3)的交叉数下界至少是2k,从而得到cr(R3k(1,3))≥2k,k≥3。Crossing number of graphs is an important part of graph theory, and many scholars at home and abroad have studied the problem of crossing number of graphs in the past hundred years, but due to the difficulty of proving it, the progress of domestic and foreign research on the field of crossing number of graphs has been slow. This paper focuses on the study of the crossing number of rose window graphs R3k(1,3) . Firstly, we get the upper bound of the crossover number of R3k(1,3) based on the well-drawn method;then divide the set of edges of R3k(1,3) into the 3k groups whose edges do not intersect, and using the inverse method and the mathematical induction method, all possible cases are discussed, so that we can prove that the lower bound of the crossover number of R3k(1,3) is at least 2k, and thus we can prove that cr(R3k(1,3))≥2k , k≥3 .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49