检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学进展》2024年第4期1226-1233,共8页Advances in Applied Mathematics
摘 要:本文基于FitzHugh-Nagumo (FHN)神经元模型建立了含高斯白噪声和电磁感应电流的小世界神经元网络模型,仿真了噪声诱导神经元网络产生相干共振,并进一步研究了神经元网络中电磁感应强度对相干共振现象的影响。研究结果表明:中等强度的噪声可以诱导神经元网络发生相干共振现象,且相干共振的强度随着电磁感应的增强而增强。这是因为随着电磁感应强度的增大,FHN神经元的Hopf分岔点向静息态移动。本文的结果进一步丰富了神经元网络的随机动力学,同时也为神经系统中的相干共振现象的调控提供了有效方法。In this study, a small-world neuronal network model containing Gaussian white noise and electromagnetic induction current is established based on the FitzHugh-Nagumo (FHN) neuron model. The simulation focuses on the noise-induced coherent resonance of the neuronal network, specifically exploring the impact of electromagnetic induction intensity on this coherent resonance phenomenon. The findings indicate that a moderate level of noise intensity can induce coherent resonance in neuronal network. Moreover, the intensity of coherent resonance escalates with the increased strength of electromagnetic induction. This observation is attributed to the movement of the Hopf bifurcation point of FHN neurons towards the resting state as the electromagnetic induction intensity rises. The outcomes presented in this paper contribute to the broader understanding of stochastic dynamics in neuronal networks and offer an effective approach for modulating coherent resonance phenomena in neural systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7