平面代数曲线上的二元Birkhoff插值问题研究  

Research on Binary Birkhoff Interpolation Problem on Plane Algebraic Curves

在线阅读下载全文

作  者:周鹏宇 王心蕊 崔利宏[1] 

机构地区:[1]辽宁师范大学数学学院,辽宁 大连

出  处:《应用数学进展》2024年第12期5261-5267,共7页Advances in Applied Mathematics

摘  要:主要研究了二元Birkhoff插值泛函组适定性问题。给出平面代数曲线上的二元Birkhoff插值适定结点组的定义并证明了相关性质定理,在过去已得到的构造适定二元切触插值泛函组的基础上给出了构造二元Birkhoff插值适定泛函组的一种新的构造方法——添加曲线交点法。该方法是通过迭加过程来实现的。因此便于在计算机上实现其构造过程。最后给出了具体实验算例。We mainly studied the problem of fitness of binary Birkhoff interpolation functional groups. We defined the fitness node group of binary Birkhoff interpolation on planar algebraic curves and proved the relevant property theorems. Based on the construction of fitness binary tangent interpolation functional groups that have been obtained in the past, we proposed a new construction method for constructing fitness binary Birkhoff interpolation functional groups—the method of adding curve intersection points. This method is implemented through the superposition process, making it easy to implement its construction process on computers. Finally, specific experimental examples were provided.

关 键 词:BIRKHOFF插值 插值适定泛函组 平面代数曲线 迭加插值法 

分 类 号:O31[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象