检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾子莹
机构地区:[1]河北工业大学理学院,天津
出 处:《应用数学进展》2025年第1期280-289,共10页Advances in Applied Mathematics
摘 要:算法展开网络在压缩感知图像重建应用中取得了巨大成功,但这些网络中未充分挖掘和利用图像的通道及空间信息的深层学习潜力,同时在重建精度和成本控制等方面都有待进一步深入探索和改进。为了实现对图像的迅速采样并从有限采样数据中准确重建图像,本文提出了一种基于邻近梯度算法展开的双域学习网络PGD-DDLN。该网络将邻近梯度算法的两步更新迭代分别展开到深度网络架构中,并在网络中加入了对图像通道和空间信息的双域学习过程。大量实验表明,我们的PGD-DDLN网络在定量指标和视觉质量方面都达到较为先进的结果。Algorithm unfolding networks have achieved great success in compressive sensing image reconstruc-tion applications, yet these networks have not fully exploited and leveraged the deep learning potential of image channel and spatial information. Additionally, there is still a need for further exploration and improvement in areas such as reconstruction accuracy and cost control. To achieve rapid image sampling and accurate image reconstruction from limited sampled data, this paper proposes a Dual-Domain Learning Network based on the Unfolded Proximal Gradient Algorithm, termed PGD-DDLN. This network unfolds the two-step update iterations of the proximal gradient algorithm into a deep network architecture and incorporates a dual-domain learning process for image channel and spatial information. Extensive experiments demonstrate that our PGD-DDLN network achieves state-of-the-art results in both quantitative metrics and visual quality.
关 键 词:邻近梯度算法 算法展开 压缩感知 图像重建 深度网络
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7