检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗艺
机构地区:[1]重庆交通大学数学与统计学院,重庆
出 处:《应用数学进展》2025年第2期376-387,共12页Advances in Applied Mathematics
基 金:重庆市研究生校级科研创新项目(2024S0134)。
摘 要:物理系统中波动、传播等现象通常用双曲型守恒律方程的数学模型来描述,特别是在流体力学领域尤为重要。针对此类方程,我们考虑了Lax-Wendroff型中心间断伽辽金方法。该方法首先采用Lax-Wendroff型时间离散方法,也就是通过泰勒级数展开处理时间导数,然后在空间上运用中心间断伽辽金方法,从而避免了传统的多步时间积分方法。最后我们对多个双曲型守恒律方程开展数值实验,验证所提出方法在计算效率和精度上的有效性。In physical systems, phenomena like wave fluctuation and propagation are often described using hyperbolic conservation law equations, which play a crucial role in fluid mechanics. To solve these equations, we employ the Lax-Wendroff central discontinuous Galerkin method. This approach begins with the Lax-Wendroff time discretization, where time derivatives are managed through a Taylor series expansion. It then incorporates the central discontinuous Galerkin method for spatial discretization and effectively eliminates the need for traditional multi-step time integration schemes. Finally, numerical experiments on various hyperbolic conservation law equations are constructed to validate the effectiveness of our method in terms of both computational efficiency and accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145