检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《临床医学进展》2025年第1期2203-2211,共9页Advances in Clinical Medicine
摘 要:目的:探讨评估临床指标和多期动态增强CT (Contrast-enhanced computed tomography, CECT)的影像学特征,并构建回归模型预测术前肝细胞癌(Hepatocellular carcinoma, HCC)微血管侵犯(Microvascular invasion, MVI)状态。方法:回顾性研究141例HCC患者的临床、影像学和病理资料。根据是否存在微血管侵犯,分为MVI阳性组77例,MVI阴性组64例。用单因素和多因素Logistic回归分析筛选MVI的独立危险因素,构建回归模型预测MVI,使用Area under the curve (AUC值)、特异度和灵敏度评估模型的预测效能。结果:最终筛选出MVI的临床和影像学独立危险因素为甲胎蛋白(Alpha-fetoprotein, AFP) ≥ 400 ng/ml、瘤周低密度环和肝外生长。结合这三个因素构建的模型ROC曲线下面积(Area under the curve, AUC)值为0.730,特异度为0.625,灵敏度为0.727。结论:由AFP联合影像学特征(瘤周低密度环和生长方式)建立的回归模型可以在一定程度上预测术前MVI状态,有助于临床优化治疗策略。Objective: To investigate the role of clinical indicators and imaging characteristics from multiphase contrast-enhanced computed tomography (CECT) in predicting preoperative microvascular invasion (MVI) in hepatocellular carcinoma (HCC), and to construct a predictive regression model for microvascular invasion (MVI) status. Methods: Clinical, imaging, and pathological data of 141 patients with HCC were studied retrospectively. Based on the presence or absence of microvascular invasion, patients were divided into MVI-positive group (n = 77) and MVI-negative group (n = 64). Independent risk factors for MVI were screened using univariate and multivariate Logistic regression analyses, and a regression model was constructed to predict MVI, and the predictive efficacy of the model was assessed using the Area under the curve (AUC value), specificity and sensitivity. Results: Independent risk factors for MVI identified from both clinical and imaging data included AFP ≥ 400 ng/ml, peritu
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.67.245