面向植被覆盖的土地利用类型分类方法  

Land Use Type Classification Method for Vegetation Coverage

在线阅读下载全文

作  者:赵鲁康 朱习军[1] 

机构地区:[1]青岛科技大学,信息科学技术学院,山东 青岛

出  处:《人工智能与机器人研究》2024年第2期388-398,共11页Artificial Intelligence and Robotics Research

摘  要:随着高光谱遥感图像和神经网络的应用,基于高光谱遥感图像的植被覆盖类型分类进一步的发展。然而由于高光谱遥感图像具有更加丰富的光谱信息,传统分类方法不能很好地同时提取光谱特征和空谱特征。为了解决上述问题,本文以U-Net模型为框架,融合了3D-CNN和多尺度特征提取模块,提出了一种基于三维卷积和多尺度特征融合的神经网络模型,使得网络在进行特征提取和分类的过程中,更好的融合光谱信息、空间信息、全局信息和细节信息,最终使模型的分类准确度得以提升。With the application of hyperspectral remote sensing images and neural networks, the classification of vegetation cover types based on hyperspectral remote sensing images has been further developed. However, since hyperspectral remote sensing images have more abundant spectral information, traditional classification methods cannot extract spectral features and spatial-spectral features at the same time. In order to solve the above problems, this paper takes the U-Net model as the framework, integrates the 3D-CNN and multi-scale feature extraction module, and proposes a neural network model based on three-dimensional convolution and multi-scale feature fusion. In the process of feature extraction and classification, the network better integrates spectral information, spatial information, global information and detail information, and finally improves the classification accuracy of the model.

关 键 词:多尺度特征 三维卷积 高光谱遥感图像 植被覆盖 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象