检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京印刷学院信息工程学院,北京
出 处:《人工智能与机器人研究》2024年第4期765-771,共7页Artificial Intelligence and Robotics Research
摘 要:传统的图像隐写往往倾向于将隐藏信息安全地嵌入到封面图像中,而几乎忽略了有效负载容量。为解决传统隐写容量低的问题,本文采用深度学习与图像信息隐藏相结合的方法。实验结果表明,在嵌入容量上,所提算法达到了24 bpp,是目前容量最大的图像隐写算法之一。在此大容量嵌入的前提下,所提算法生成的载密图像和提取的秘密图像,无论在主观视觉质量还是客观视觉指标峰值信噪比(PSNR)上都高于其他同类算法,说明了设计的端到端隐写网络的整体优越性。Traditional image steganography methods often focus on securely embedding hidden information into cover images, while paying little attention to the payload capacity. To address the issue of low embedding capacity in conventional steganography, this paper combines deep learning with image information hiding techniques. Experimental results show that the proposed algorithm achieves an embedding capacity of 24 bpp, making it one of the highest-capacity image steganography algorithms to date. Despite the large embedding capacity, the stego-images generated by the algorithm and the extracted secret images outperform other similar algorithms in both subjective visual quality and objective visual metrics such as Peak Signal-to-Noise Ratio (PSNR). This demonstrates the overall superiority of the designed end-to-end steganography network.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49