检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用物理》2020年第11期467-475,共9页Applied Physics
摘 要:为用晶格动力学方法研究硅单晶的热膨胀性质,必须首先计算作为微扰哈密顿的硅单晶晶格的三阶非和谐势能,而三阶非和谐势能的计算又可以建立在已知不同晶格常数所对应的晶格和谐势能的基础上,因此本文运用他人计算得到的最近邻和次近邻原子间的相互作用力常数,推导了的硅单晶的晶格和谐势能公式,并在此基础上根据不同晶格常数下的晶格和谐势能推导了三阶非和谐势能公式,为后续硅单晶的热膨胀系数计算公式的推导做了必要准备。最后还运用本文提出的三阶非和谐势能模型,计算了不同温度下硅单晶的格律纳森参数,发现其与他人的实验结果吻合,从而验证了本文所提出的三阶非和谐势能模型的正确性。Abstract: In order to study the thermal expansion properties of silicon single crystal by lattice dynamics, the third order anharmonic potential of silicon single crystal lattice should be calculated as the perturbation Hamiltonian first, and the calculation of the third order anharmonic potential can be based on the lattice harmonic potential corresponding to different lattice constants. Therefore, the formula for lattice harmonic potential energy of silicon single crystal is derived first by using the interaction force constants between the nearest neighbor atoms and the next-nearest neighbor atoms calculated by others, and then the formula for the third order anharmonic potential is derived based on the lattice harmonic potential with different lattice constants. It is a necessary preparation for the subsequent derivations of formula for thermal expansion coefficient. Finally, with the third-order anharmonic potential energy model proposed in this paper, the Gruneisen parameters of silicon single crystal at different temperature are calculated, and it coincides with the experimental results of others. Thus the correctness of the third-order anharmonic potential energy model proposed in this paper is verified.
关 键 词:硅单晶 热膨胀 晶格动力学 力常数 非和谐势能 格律纳森参数
分 类 号:TN3[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.17.22