检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2017年第10期1036-1044,共9页Computer Science and Application
基 金:湖南省自然科学基金(2016JJ4090);广东省攀登计划基金(PDJH2016a0991)。
摘 要:针对slope one协同过滤算法中存在的数据稀疏性问题展开研究。提出一种基于余弦相似度加权的协同过滤算法(COSLOPE算法)。用加权slope one算法填充稀疏的评分矩阵后利用cosine算法计算用户之间的相似度,得出目标用户的近邻矩阵。通过近邻矩阵中拥有评分记录的用户来预测目标用户的项目评分,并进行推荐。该算法通过MovieLens数据集验证,MAE、RMSE 和MSE的值均优于传统Slope One算法。COSLOPE算法在有效解决数据稀疏性的同时亦提高了传统推荐算法的准确度并降低了算法响应时间。In this paper, we propose a collaborative filtering algorithm based on cosine similarity weight (COSLOPE algorithm). The similarity between the users is calculated by the cosine algorithm;the weights are determined according to the similarity degree and the scoring matrix is filled in order to establish the nearest neighbor set with high similarity to the object user. The nearest neighbor set of the nearest neighbor set is to predict the target user’s project grade and make recommendations. The algorithm is validated by the MovieLens dataset, and the values of MAE, RMSE and MSE are superior to the traditional Slope One algorithm. COSLOPE algorithm is not only in the effective solution of data sparseness, but also improve the accuracy of the traditional recommendation algorithm and reduce the algorithm response time.
关 键 词:余弦相似度 SLOPE One算法 数据稀疏性 协同过滤
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.151.13