基于深度学习的非小细胞肺癌耐药性研究  

Research on Drug Resistance of Non-Small Cell Lung Cancer Based on Deep Learning

在线阅读下载全文

作  者:韦涛 李璧江 穆亮 梁婵 张学军[1,2] 

机构地区:[1]广西大学计算机与电子信息学院,广西 南宁 [2]广西多媒体通信与网络技术重点实验室,广西 南宁

出  处:《计算机科学与应用》2020年第10期1853-1862,共10页Computer Science and Application

摘  要:非小细胞肺癌(NSCLC)是一种最常见的肺部癌症,临床上主要通过分子靶向药物进行治疗。随着时间的推移,NSCLC患者很容易对药物产生不同类型的耐药性,增加了临床治疗的难度。为了捕捉肿瘤不同时间点的生物学特性来预测患者的耐药性类型,本文提出了一种基于卷积神经网络(CNN)和循环神经网络(RNN)的深度学习模型,CNN用于提取不同时间点的肿瘤图像特征,并将这些特征输入到RNN中做进一步的纵向分析。168例NSCLC患者数据按3:1的比例划分为训练组和测试组,结合迁移学习完成模型构建。经检验,模型在测试集上的预测精度为79.16%,表明了将本方法用于预测NSCLC患者的耐药性类型具有一定的可行性。Non-small cell lung cancer (NSCLC) is one of the common lung cancers and mainly treated clinically through Molecular targeted drugs. However, NSCLC patients are prone to develop different types of drug resistance, which increase the difficulties of clinical treatment. This study proposed a deep learning model based on Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) to predict the type of drug resistance of NSCLC patients by capturing the biological characteristics of tumors at different time points. CNN is used to extract tumor image features at different time points, and output these features into RNN for further longitudinal analysis. A total of 168 NSCLC patients are split 3:1 into training cohort and test cohort, which are combined with transfer learning to build the model. Experimental results show that the model achieves 79.16% accuracy on test set, which indicates that this method has certain feasibility for predicting the resistance type of NSCLC patients.

关 键 词:深度学习 非小细胞肺癌(NSCLC) 耐药性预测 医学图像序列 迁移学习 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象