检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]五邑大学智能制造学部,广东 江门
出 处:《计算机科学与应用》2021年第2期257-265,共9页Computer Science and Application
摘 要:为了提高数显仪表的识别率,设计了一种传统图像处理方法和深度学习技术相结合的算法,即一种基于改进的卷积神经网络的数显仪表识别算法。首先通过传统图像处理技术对图像进行图像预处理、字符分割等操作,然后由基于注意机制的卷积神经网络算法对字符进行识别。实验结果表明,该方法不仅有效提高了字符的准确率,字符识别率高达98.5%,还提高了网络的收敛速度。该方法基本可以满足各种数显仪表的识别,能够满足实际应用的需求。In order to improve the recognition rate of digital display instruments, an algorithm combining traditional image processing method and deep learning technology is designed, that is, an algorithm for digital display instrument recognition based on an improved convolutional neural network. Firstly, the traditional image processing technology is used to perform image preprocessing, character segmentation and other operations, and then the characters are recognized by the convolutional neural network algorithm based on the attention mechanism. The experimental results show that this method not only improves the character accuracy effectively, the character recognition rate is up to 98.5%, but also improves the convergence speed of the network. This method can basically meet the recognition of various digital display instruments and meet the requirements of practical application.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171