检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2022年第2期356-365,共10页Computer Science and Application
摘 要:自20世纪90年代以来,嗅觉技术越来越受欢迎,并以各种方式进入了商业用途。从化妆品到洗发水,以及带有香味的博物馆和主题公园,嗅觉消费产品已经陡然流行起来,消费者不仅虚心接受,甚至积极寻求嗅觉产品。然而,目前关于嗅觉的研究大多来自于气味分子的电子鼻数据和质谱数据的角度,而这些数据的获取需要耗费大量的人力和时间。因此,我们从一个新的角度出发,将气味分子的结构视为一个由节点和边组成的图,并引入图卷积网络作用于这个图结构来预测气味分子的气味印象。我们在公开的气味数据集上进行了模型训练,预测了气味分子的气味愉悦度、强度和熟悉度得分,均取得了较好的结果,其中气味愉悦度得分预测的平均绝对误差MAE = 8.532,皮尔逊相关系数为r = 0.520 (p 【0.0000001),证实了将气味分子的结构视为图结构而获得的分子信息能够预测气味分子的气味印象。Since the 1990s, olfactory technology has grown in popularity and entered commercial use in a variety of ways. From cosmetics to shampoos, to scented museums and theme parks, olfactory consumer products have exploded in popularity, with consumers not only humbly accepting but actively seeking them. However, most of the current research on olfaction comes from the electronic nose data and mass spectrometry data of odor molecules, and the acquisition of these data requires a lot of manpower and time. Therefore, from a new perspective, we treat the structure of odor molecules as a graph consisting of nodes and edges, and introduce a graph convolutional network to act on this graph structure to predict the odor impression of odor molecules. We trained the model on the public odor data set, and predicted the odor pleasantness, intensity and familiarity scores of odor molecules, and achieved good results. The mean absolute error of odor pleasantness score prediction was MAE = 8.532, and Pearson’s correlation coefficient was r = 0.520 (p
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30