检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张健[1]
机构地区:[1]浙江传媒学院,浙江 杭州
出 处:《计算机科学与应用》2023年第12期2155-2162,共8页Computer Science and Application
摘 要:随着互联网的迅速扩展,数字媒体图像开始在网络上大量的传播。随之而来的却是数字媒体图像大量滥用和盗版等侵权问题,这使得数字版权保护成为一个需迫切解决的问题。为了解决这一问题,本研究设计了一个用来实现图像相似度对比的图像监控系统,该监控系统在特征提取、特征匹配和阈值评判上分别采用了改进ORB算法、Brute Force算法和Logistic算法。特别是在特征提取上研究采用四叉树算法优化改进ORB特征提取的过程,在提高算法运行速度的同时增加了特征的稳定性减少了特征的重复性。经实验表明,改进的ORB算法的特征提取具有良好的性能,能有效的提升疑似侵权图像的识别度,具有较高的实用价值和研究意义。With the rapid expansion of the Internet, digital images begin to spread extensively on the internet. Subsequently, there are numerous issues of abuse of these digital images, which make digital copy-right protection an urgent issue to be solved. To solve this issue, this study designs an image monitoring system online for achieving image similarity comparison. The monitoring system adopts im-proved ORB algorithm, Brute Force algorithm, and Logistic algorithm in feature extraction, feature matching, and threshold evaluation. Especially in the field of feature extraction, the study uses the quadtree algorithm to optimize and improve the ORB feature extraction process, which not only improves the algorithm’s running speed, but also increases the stability of the features and reduces their repeatability. Experiments have also shown that the improved ORB algorithm has good performance in feature extraction and can effectively improve the recognition of suspected infringe-ment images, which has high practical and research value.
关 键 词:ORB算法 四叉树算法 特征提取 图像监控系统 数字版权保护技术
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15