检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国银联股份有限公司,上海
出 处:《计算机科学与应用》2024年第2期249-259,共11页Computer Science and Application
摘 要:机构备付金是金融机构的重要指标之一,对于评估其稳定性和偿付能力具有重要意义。在第三方支付机构备付金集中存管的背景下,准确预测支付机构备付金的变动对于监管机构风险管理等方面具有重要价值。笔者提出了一种基于LSTM、Transformer和LightGBM的机构备付金预测模型。利用树模型针对表格数据的快速性和准确性,选取交易日志的关键特征;利用Transformer的全局上下文建模能力捕捉财务文件的局部特征;最后采用LSTM算法获取结合后的数据的长期依赖关系。实验结果表明:该模型在机构备付金方面的预测准确性优于ARMA算法、LSTM算法和时序预测Transformer模型。Institutional reserve is one of the important indicators for evaluating the stability and solvency of financial institutions. Accurate prediction of changes in payment institution reserves is of significant value for risk management and regulation by regulatory authorities in the context of centralized custody of reserves for third-party payment institutions. This paper proposes a prediction model for institutional reserve based on LSTM, Transformer, and LightGBM. The LightGBM model is utilized to extract key features of transaction logs, because tree-based model is fast and accurate in tabular data. The Transformer model is utilized to capture the local features of financial documents with its ability to model global context. Lastly, the LSTM algorithm is employed to capture the long-term dependencies of the combined data. Experimental results demonstrate that the proposed algorithm outperforms ARMA, LSTM, and Transformer models in predicting institutional reserves.
关 键 词:深度学习 时间序列预测 长短期记忆网络 TRANSFORMER LightGBM
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49