基于深度学习的复合材料层合板损伤图像分类的研究  

Research on Damage Image Classification of Composite Laminates Based on Deep Learning

在线阅读下载全文

作  者:王正水 赵刚[1,2] 吴慧婕 孙汤慧 

机构地区:[1]南昌航空大学数学与信息科学学院,江西 南昌 [2]南昌航空大学无损检测技术教育部重点实验室,江西 南昌

出  处:《计算机科学与应用》2024年第2期308-316,共9页Computer Science and Application

摘  要:针对复合材料结构检测损伤检测问题,本文提出了一种基于深度学习进行复合材料结构损伤检测的方法。本方法首先通过网络和文献收集复合材料结构图像资料,建立数据集,数据集包含损伤和未损伤的复合材料层合板图片;然后采用三个卷积神经网络模型AlexNet、VGG和ResNet对损伤情况进行自动分类;最后对三种预先训练过的网络架构的性能进行评估。实验结果表明,在相同的实验条件下,AlexNet技术使用相对较小的图像数据集,在合理的计算时间内能够成功地检测出损伤,且测试精度最高,复杂性较低。Composite structure detection technology has been exploring the efficient and fast damage detec-tion technology. In this paper, an image-based NDT technique is proposed to detect composite ma-terial damage by deep learning. A dataset containing damaged and non-damaged composite laminate images was established through the network and literature data. Then three convolutional neural network models AlexNet, VGG and ResNet were used to automatically classify the damage conditions. Finally, the performance of three pretrained network architectures is evaluated. The results show that AlexNet technology can successfully detect damage within a reasonable calculation time using a relatively small image dataset, with the highest test accuracy and low complexity.

关 键 词:复合材料 卷积神经网络 损伤检测 深度学习 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象