检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南财经政法大学计算机与信息工程学院,河南 郑州 [2]浙江医院信息中心,浙江 杭州
出 处:《计算机科学与应用》2024年第10期58-66,共9页Computer Science and Application
摘 要:针对静脉血栓栓塞症电子病历文本语义复杂,疾病信息多维性导致的疾病特征学习不彻底、实体识别不准确的问题,本文提出了一种并行神经网络的疾病特征实体识别方法。首先,通过RoBERTa模型,更好地学习到病历实体中的特征信息。然后,通过双向长短期记忆网络,提取病历中的全局特征,再经过并行的迭代膨胀卷积神经网络提取病历中的局部特征。最后,利用CRF推理层修正神经网络输出的疾病特征标签。在医院提供的2000份静脉血栓电子病历上,本方法的平均准确率为85.26%,相对于单纯的卷积神经网络,该方案的识别准确率提高了13.52%。In response to the intricate semantics of electronic medical records for venous thromboembolism and the multi-dimensionality of disease information that gives rise to incomplete acquisition of disease features and inaccurate entity recognition, this paper presents a parallel neural network-based disease feature and entity recognition approach. Firstly, the language representation RoBERTa model is employed to more effectively acquire the feature information of medical record entities. Subsequently, a bidirectional long short-term memory network is utilized to extract global features from the medical record, followed by a parallel iterative dilated convolutional neural network for extracting local features from the medical record. Eventually, the CRF inference layer is adopted to rectify the disease feature labels output by the neural network. On the 2000 venous thromboembolism electronic medical records provided by the hospital, the average accuracy of the proposed method is 85.26%, which is 13.52% higher than that of the pure convolutional neural network.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33