检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江理工大学计算机科学与技术学院(人工智能学院),浙江 杭州
出 处:《电子商务评论》2025年第3期1140-1150,共11页E-Commerce Letters
摘 要:在信息技术不断进步和农村基础设施日益完善的背景下,电子商务已逐步渗透到农村市场,并成为推动农业现代化的重要动力。然而,农村电商的发展仍面临诸多挑战,如商品质量参差不齐、专业人才缺乏、物流效率低下等问题。为了更准确地预测农村电商的市场趋势,为电商企业和政策制定者提供科学的数据支持,本研究提出了一种基于长短时记忆网络(Long-Short Term Memory, LSTM)的时间序列预测模型,并结合注意力机制(Attention Mechanism)和卡尔曼滤波(Kalman filter)技术,对2024~2026年农村网络零售额进行预测。实验结果表明,引入注意力机制和卡尔曼滤波后,模型的预测精度显著提升,均方误差(mean-square error, MSE)、均方根误差(root-mean-square error, RMSE)和平均绝对误差(Mean absolute error, MAE)均有所降低。研究结果为农村电商的市场趋势分析和政策制定提供了科学依据,具有重要的现实意义。With continuous advancements in information technology and the gradual improvement of rural infrastructure, e-commerce has increasingly penetrated rural markets, becoming a key driver of agricultural modernization. However, its development still faces numerous challenges, such as inconsistent product quality, a shortage of skilled professionals, and low logistics efficiency. To more accurately predict market trends in rural e-commerce and provide scientific data support for e-commerce enterprises and policymakers, this study proposes a time series prediction model based on Long Short-Term Memory (LSTM) networks, incorporating an attention mechanism and Kalman filter techniques to forecast rural online retail sales from 2024 to 2026. The experimental results indicate that the introduction of the attention mechanism and Kalman filter significantly improves the model’s prediction accuracy, reducing the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE). The findings provide a scientific
关 键 词:农村电商 时间序列预测 LSTM 注意力机制 卡尔曼滤波
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222