检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]滁州学院地理信息与旅游学院,安徽 滁州 [2]滁州学院实景地理环境安徽省重点实验室,安徽 滁州
出 处:《测绘科学技术》2021年第4期139-145,共7页Geomatics Science and Technology
摘 要:如今深度学习广泛应用于医学、工业、人工智能以及地理学等领域。本文基于DenseNet模型,在其残差块之间加入1 ×1的小型卷积核作为瓶颈层得到了一种改进的DenseNet_BL模型,以琅琊山林场为研究区,使用DenseNet121_BL和DenseNet169_BL模型对研究区的无人机高分辨率光学影像进行分类研究实验。得到的实验结果表明DenseNet121_BL模型在进行树种分类时正确率最高,达到了88.29%。说明改进后的DenseNet_BL模型是一种有效的树种分类算法。Deep learning is widely used in medicine, industry, artificial intelligence, geography and other fields. This paper proposes an improved DenseNet_BL model based on DenseNet model. An improved DenseNet_BL model is obtained by adding a 1 ×1 small convolution kernel between the Residual Blocks as the Bottleneck Layer. Taking Langya Mountain Forest as the research area, DenseNet 121_BL and DenseNet169_BL models were used to classify UAV high-resolution optical images in the research area. The experimental results showed that DenseNet_BL121 model had the highest accuracy in tree species classification, reaching 88.29%. The improved DenseNet_BL model is an effective tree species classification algorithm.
关 键 词:DenseNet 残差网络 无人机 深度学习 树种分类
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171