检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶方
机构地区:[1]江苏省地质勘查技术院,江苏 南京
出 处:《测绘科学技术》2023年第3期200-206,共7页Geomatics Science and Technology
摘 要:本文以机载LiDAR点云数据为研究对象,提出一套建筑物三维模型重建方法。首先使用渐进三角网滤波算法分类地面点与非地面点,通过训练完成的随机森林模型完成建筑物点云提取;其次将方向作为约束条件,使用随机抽样一致(Random Sample Consensus, RANSAC)算法完成建筑物轮廓线提取并获取屋顶关键点信息;最后使用SharpGL工具包,以建筑物轮廓线与屋顶关键点信息为框架重建建筑物三维模型。以实测机载LiDAR点云数据为例进行实验,结果表明本文方法能够提取得到完整的建筑物轮廓信息,并具有较高的建筑物模型重建精度。Based on the airborne LiDAR point cloud data, this paper proposes a set of building 3D model re-construction methods. Firstly, the gradual triangulation filtering algorithm is used to classify ground points and non-ground points, and the building point cloud is extracted through the trained random forest model;secondly, the direction is taken as the constraint condition, and the random sample consistent (RANSAC) algorithm is used to extract the building contour line and obtain the roof key point information;finally, the SharpGL toolkit is used to reconstruct the 3D model of the building based on the building outline and roof key point information. Taking the measured air-borne LiDAR point cloud data as an example, the experimental results show that the proposed method can extract complete building contour information, and has high building model recon-struction accuracy.
关 键 词:随机抽样一致 轮廓线提取 随机森林模型 重建方法 RANSAC 建筑物三维模型 建筑物模型 三角网
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49