检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁二凯
机构地区:[1]太原市国土空间规划测绘院(太原市城市雕塑研究院),山西 太原
出 处:《测绘科学技术》2024年第1期16-23,共8页Geomatics Science and Technology
摘 要:为提高点云配准的效率与精度,弥补传统点云配准算法中的不足,本文尝试将主方向贴合算法与改进的最近点迭代(Improved Iterative Closest Point, IICP)算法作为组合点云配准算法;该组合算法充分利用主方向贴合算法在粗配准中的优势,并结合IICP算法作为精配准的方法。以某三维激光扫描建模工程为案例,依靠Matlab软件编程实现了本文所提及的配准算法。实验结果表明,改进的ICP算法较传统ICP算法配准效率与精度均有提高。充分验证了主方向贴合算法与IICP点云算法在点云三维模型构建方面的有效性。To improve the efficiency and accuracy of point cloud registration and make up for the shortcom-ings of traditional point cloud registration algorithms, this paper attempts to use the principal di-rection fitting algorithm and the improved Iterative Closest Point (IICP) algorithm as a combined point cloud registration algorithm;the combined algorithm fully utilizes the advantages of the principal direction fitting algorithm in rough registration, and combines IICP algorithm as a fine registration method. Taking a 3D laser scanning modeling project as an example, the registration algorithm mentioned in this article was implemented by programming with Matlab software. The experimental results show that the improved ICP algorithm has improved registration efficiency and accuracy compared to the traditional ICP algorithm. The validity of the principal direction fit-ting algorithm and the IICP point cloud algorithm in constructing 3D model of point clouds is fully verified.
关 键 词:点云数据配准 主方向贴合算法 粗配准 最近点迭代算法 精配准
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.38.243