检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中冶京诚工程技术有限公司,北京
出 处:《土木工程》2024年第5期618-625,共8页Hans Journal of Civil Engineering
摘 要:结构的稳定性能直接关系到安全性和经济性,尤其是近代以来高强材料和薄壁结构的使用,稳定问题显得更加重要。本文介绍了四边简支矩形薄板在纵向集中荷载作用下的压屈以及用能量法求临界荷载的方法,通过一个实例,采用能量法及有限元法分析了该结构的屈曲稳定性能。分别选取一项三角级数和两项三角级数作为挠度表达式代入能量法公式中进行计算,并讨论了选取两项三角级数作为挠度表达式时的取值方法。使用ABAQUS对矩形薄板进行了特征值计算,结果证明,数值计算结果略大于能量法的理论解,能量法的理论解更偏安全。The stability performance of structures is directly related to safety and economy, especially with the use of high-strength materials and thin-walled structures in modern times, stability issues have become more important. This article introduces the buckling of simply supported rectangular thin plates under longitudinal concentrated loads and the method of calculating critical loads using the energy method. Through an example, the buckling stability performance of the structure is analyzed using the energy method and finite element method. One trigonometric series and two trigonometric series are selected as deflection expressions to be used in the energy method formula for calculation, and the method of selecting two trigonometric series as deflection expressions is discussed. Using ABAQUS to calculate the eigenvalues of rectangular thin plates, the results show that the numerical calculation results are slightly larger than the theoretical solution of the energy method, and the theoretical solution of the energy method is more biased towards safety.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51