基于文本分析的网络舆情主题演化及主体特征研究  

Research on the Theme Evolution and Subject Characteristics of Network Public Opinion Based on Text Analysis

在线阅读下载全文

作  者:许文晴 王成龙 陈梅梅[1] 沈惠璋[3] 

机构地区:[1]东华大学旭日工商管理学院,上海 [2]清华大学法学院,北京 [3]上海交通大学安泰经济与管理学院,上海

出  处:《新闻传播科学》2023年第4期1056-1066,共11页Journalism and Communications

摘  要:目的/意义:为反映突发经济事件中网络舆情主题演化的时序发展规律及重要参与主体的特征,为涉事企业积极应对网络舆情危机提供指导,并提供一种有效识别网络舆情公众关注的主题及分析其演化规律的参考方法。方法/过程:本文以“M集团IPO叫停”突发经济事件为例,基于LDA主题模型与K-means聚类对微博相关博文进行文本分析。在主题识别基础上,根据舆情发展的生命周期理论,研究突发经济事件网络舆情传播不同阶段的热点主题及主体类别。结果/结论:揭示了网络舆情生命周期各阶段公众关注的主题及其演化特征以及对推动舆情演化发挥主导作用的主体特征,为涉事企业制定积极的网络舆情应对策略提供了相应的管理启示。Purpose/Significance: In order to reflect the temporal development law of the evolution of the theme of network public opinion and the characteristics of important subject in economic emergencies, provide guidance for the enterprises involved to actively respond to the crisis of network public opinion, and provide a reference method to effectively identify the theme of public concern of network public opinion and analyze its evolution law. Method/Process: This paper takes the economic emergency “M Group IPO suspension” as an example, based on LDA theme model and K-means clustering, and carries out text analysis on the relevant blog posts on Weibo. On the basis of theme identification, according to the life cycle theory of public opinion development, this paper studies the hot topics and subject categories in different stages of network public opinion communication during the economic emergency. Result/Conclusion: This paper reveals the theme of public concern at each stage of the life cycle of online public opinion and its evolution characteristics, as well as the subject that plays a leading role in promoting the evolution of online public opinion, and provides corresponding management enlightenment for the enterprises involved in formulating positive online public opinion response strategies.

关 键 词:网络舆情 生命周期理论 主题识别 文本分析 主题演化 舆情演化 热点主题 主体特征 

分 类 号:G20[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象