检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学电子信息学院,四川成都
出 处:《图像与信号处理》2017年第1期29-36,共8页Journal of Image and Signal Processing
摘 要:低照度环境下拍摄的图像往往会出现细节模糊不清的情况,传统的Retinex算法可以有效提高图像质量,然而当图像亮度整体较低时可能会出现过增强现象。为了改善低照度环境下拍摄图像的质量,本文提出了一种基于HSI颜色空间的改进的多尺度Retinex图像增强算法,采用引导图像滤波消除应用Retinex算法所产生的“光晕伪影”现象,并利用原图像的亮度信息对多尺度Retinex算法增强后的图像进行了亮度重构,有效地抑制了过增强等失真现象,进一步提高了图像增强质量。实验结果表明,本文算法与传统的多尺度Retinex算法相比在低照度图像亮度增强、对比度增强和图像细节信息保护方面具有更好的表现效果。The images which are captured in low brightness environment are often blurred. The traditional Retinex algorithm can improve the quality of image;however enhancement phenomenon may occur when the image brightness is low. In order to improve the quality of captured images in brightness environment, an improved multi-scale Retinex image enhancement algorithm based on HSI color space is proposed in this paper. In this algorithm, the guide image filtering is used to eliminate the “halo artifact”. The intensity of enhanced image based on multi-scale Retinex algorithm, is reconstructed by applying the intensity of original image. This effectively suppresses the distortion such as over-enhancement, and further enhances the image quality. Experimental results show that for low-luminance image the proposed algorithm has better performance than the traditional multi-scale Retinex algorithm in brightness enhancement, contrast enhancement and image detail information protection.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249