金字塔卷积融合YOLOv4的乳腺肿块检测算法  

Breast Mass Detection Algorithm Based on Pyramid Convolution Fusion with YOLOv4

在线阅读下载全文

作  者:罗菁[1] 凌现慧 

机构地区:[1]天津工业大学,控制科学与工程学院,天津

出  处:《图像与信号处理》2021年第4期192-201,共10页Journal of Image and Signal Processing

摘  要:针对乳腺肿块与腺体对比度低而导致检测精度低,假阳性率较高的问题,提出了一种基于改进的YOLOv4网络的乳腺肿块检测方法。首先引入金字塔卷积,通过不同大小和深度的卷积核,对输入的特征进行提取;其次,将原特征提取网络中的普通卷积替换为深度可分离卷积,减少网络训练参数,提升网络训练速度。实验结果表明,改进的YOLOv4算法在测试集上的敏感性达到81.49%,较原网络高了2.81%,AP值达到86.85%,比原网络的AP值高了4.27%;平均每幅图假阳性个数为0.418个,相较原网络降低了0.028个,该算法的检测性能较YOLOv4有明显提升。Aiming at the problems of low detection accuracy and high false positive rate caused by low contrast between breast mass and gland, a breast mass detection method based on improved YOLOv4 is proposed. Firstly, Pyramid Convolution is introduced to extract the input features through convolution kernels of different sizes and depths;Secondly, the ordinary convolution in the original feature extraction network is replaced by Depthwise Separable Convolution to reduce the network training parameters and improve the network training speed. The experimental results show that the sensitivity of the improved YOLOv4 algorithm on the test set is 81.49%, which is 2.81% higher than that of the original network, and the AP value is 86.85%, which is 4.27% higher than that of the original network;The average number of false positives per image is 0.418, which is 0.028 lower than the original network. The detection performance of the algorithm is significantly improved compared with YOLOv4.

关 键 词:乳腺X线图像 YOLOv4 金字塔卷积 深度学习 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象