检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晖 吴茜茵 胡欣仪 唐栩燃 罗伟 赵雪如 谭廷俊 赵泽华 李超然
机构地区:[1]贵州大学,大数据与信息工程学院,贵州 贵阳 [2]贵州大学,农学院,贵州 贵阳
出 处:《图像与信号处理》2024年第1期33-46,共14页Journal of Image and Signal Processing
摘 要:近年来,人工智能技术在害虫识别领域得到广泛应用。目前深度网络害虫识别方法仍存在计算量大、对复杂背景下的害虫识别效果差等问题。为了解决计算量大的问题,本文提出了一种新型轻量网络——WraNet。该网络利用二维离散变换模块对图像进行特征混合,并学习图像的强先验知识,例如尺度不变性、平移不变性和边缘稀疏性。这使得单层二维离散小波变换层达到多层深度神经网络的效果,从而减少了计算量和模型参数的大小。本文还提出了一种新的算法——WraNet-m,该算法通过软投票集成了WraNet、ResNet50和FPN网络模型,以进一步提升识别效果。WraNet-m算法在IP102和D0害虫数据集上的准确率分别达到了72.44%和99.52%,证明了集成方法的有效性和鲁棒性。In recent years, with the promotion of agricultural informatization, artificial intelligence techniques have been widely applied in the field of pest recognition. However, current deep neural net-work-based pest recognition methods still face challenges such as high computational complexity and poor performance in complex background scenarios. To address the issue of high computation-al complexity, we propose a novel network called WraNet. This network employs a two-dimensional discrete transform module for token mixing and learns strong prior knowledge of the image, such as scale-invariance, shift-invariance, and sparseness of edges. It is worth noting that we also propose a new algorithm, WraNet-m, which combines WraNet, ResNet50, and FPN models through soft voting for further performance improvement. The WraNet-m algorithm achieves accuracies of 72.44% on the IP102 pest dataset and 99.52% on the D0 pest dataset, approaching state-of-the-art results on both datasets, thus demonstrating the effectiveness and robustness of the ensemble method.
关 键 词:害虫识别 二维离散小波变换 计算机视觉 深度学习
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49