基于信号波形特征的刀具破损监控方法优化  

Optimization of Tool Damage Monitoring Method Based on Signal Waveform Characteristics

在线阅读下载全文

作  者:吕国艳 张志毅 方喜风 江源 湛红晖 

机构地区:[1]中车青岛四方机车车辆股份有限公司,山东 青岛 [2]华中科技大学机械科学与工程学院,湖北 武汉 [3]华中科技大学无锡研究院,江苏 无锡

出  处:《传感器技术与应用》2024年第4期666-680,共15页Journal of Sensor Technology and Application

摘  要:针对微弱破损信号的监控,提出了一种基于信号波形特征的刀具破损监控方法。先分析了刀具破损监控的各项特征,包括信号降噪方法等对破损特征值的影响、不同工艺条件下破损特征值的监控要求等。对于破损造成的时域信号波动较小而动态包络法难以识别的问题,提出了基于信号波形特征的刀具破损监控方法。最后验证了基于信号波形特征的刀具破损监控方法的有效性,相比于动态包络法准确度大幅提高。Aiming at the monitoring of weak damage signal, a tool damage monitoring method based on signal waveform characteristics is proposed. Firstly, the characteristics of tool damage monitoring are analyzed, including the influence of signal noise reduction method on the damage characteristic value, and the monitoring requirements of the damage characteristic value under different process conditions. To solve the problem that the time domain signal fluctuation caused by damage is small and the dynamic envelope method is difficult to identify, a tool damage monitoring method based on signal waveform characteristics is proposed. Finally, the effectiveness of the tool damage monitoring method based on signal waveform characteristics is verified, and the accuracy is greatly improved compared with the dynamic envelope method.

关 键 词:刀具状态智能化监控 刀具破损 波形特征 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象