基于混合IRS辅助大规模MIMO系统的仿真信道估计方法  

Simulation Channel Estimation Method for Large-Scale MIMO Systems Based on Hybrid IRS

在线阅读下载全文

作  者:邬婷婷 李烨[1] 

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海

出  处:《建模与仿真》2023年第3期3088-3099,共12页Modeling and Simulation

摘  要:对于IRS辅助的大规模MIMO系统,大多数研究都需要基于信道状态信息已知,而IRS通常为无源中继,导频开销较大,信道估计具有挑战性。为此,研究引入了一种包含有源和无源元件的混合IRS架构,使用少量RF链接收用户发送的上行导频信号,利用毫米波信道的稀疏特性,采用压缩感知算法重构信道,减少了导频损耗。考虑到信道为复数矩阵,传统的方法都将其实部虚部分开输入网络进行训练,该类方法会丢失信道的部分信息。为此,研究引入了一种注意力引导的复数深度去噪的神经网络AM-DnCNN。该网络可以将信道看作是二维带有噪声的矩阵进行训练,引入注意力机制加强信道的噪声特征,网络输出噪声矩阵,重构噪信道矩阵。仿真结果表明,所提方法可以利用更少的导频获得更优的信道状态信息,有效减少了导频损耗,且在不同路径数量和不同信噪比的情况下,网络也具有很好的鲁棒性。For IRS-assisted large-scale MIMO systems, most studies need to be based on channel state infor-mation known, and IRS is usually passive relay, with high pilot overhead and challenging channel estimation. To this end, a hybrid IRS architecture containing active and passive components is in-troduced. A small number of RF links are used to receive upstream pilot signals sent by users. The sparse characteristics of millimeter wave channels are utilized to reconstruct the channels by com-pressed sensing algorithm to reduce pilot losses. Considering that the channel is a complex matrix, traditional methods separate the real and imaginary parts into the network for training, which will lose some information of the channel. Therefore, an attention-guided complex depth denoising neural network AM-DnCNN is introduced. In this network, the channel can be regarded as a two-dimensional matrix with noise for training. Attention mechanism is introduced to enhance the noise characteristics of the channel. The network outputs the noise matrix and reconstructs the de-noised channel matrix. The simulation results show that the proposed method can use fewer pi-lots to obtain better channel state information, effectively reduce pilot loss, and the network also has good robustness under different number of paths and different SNR.

关 键 词:信道状态信息 导频信号 无源元件 信道估计 稀疏特性 复数矩阵 信道矩阵 注意力机制 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象