基于YOLOv5s的蝴蝶种类检测  

Butterfly Species Detection Based on YOLOv5s

在线阅读下载全文

作  者:赵凯旋 覃林 谢本亮 

机构地区:[1]贵州大学大数据与信息工程学院,贵州 贵阳 [2]教育部功率半导体器件可靠性工程中心,贵州 贵阳 [3]贵州大学公共大数据国家重点实验室,贵州 贵阳

出  处:《建模与仿真》2023年第6期5834-5842,共9页Modeling and Simulation

摘  要:蝴蝶对周围环境敏感,能作为反应生态环境的指示物种,因此对其进行识别研究对研究生态稳定性具有重大意义。但蝴蝶分类细致,相似度高,传统识别方法效率低。为解决上述问题,本文以野外蝴蝶图像的种类自动识别为目标,提出了一种基于YOLOv5s的改进的目标检测方法。为了减少信息丢失,提高精度,在YOLOv5s的主干特征提取网络上设计了CSandGlass模块来代替残差模块;并加入了SE注意力机制和对损失函数进行改进。实验结果表明,改进后模型平均精度为92.6%,相比原模型平均精度提升2%,且具有较强的鲁棒性和稳定性,可满足自然环境下的蝴蝶种类识别需求。Butterflies are sensitive to their surroundings and can be used as indicator species responding to the ecological environment, so their identification studies are of great significance for studying eco-logical stability. However, butterfly classification is highly detailed with high similarity, and the tra-ditional recognition methods are inefficient. In order to solve the above problems, this paper pro-poses an improved object detection method based on YOLOv5s with the goal of automatic species identification of butterfly images. In order to reduce the information loss and improve the accuracy, the CSandGlass module is designed on the backbone feature extraction network of YOLOv5s to re-place the residual module;and the SE attention mechanism and the loss function are added and improved. The average accuracy of the improved model is 92.6%, compared with the original model, the average accuracy is improved by 2%, and has strong robustness and stability, which can meet the demand of butterfly species recognition in natural environment.

关 键 词:蝴蝶识别 目标检测 YOLOv5s CSandGlass SE注意力 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象