检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于文博
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2024年第2期1615-1622,共8页Modeling and Simulation
摘 要:本文针对出血性脑卒中手术后血肿扩张的问题,建立自注意力卷积神经网络模型预测其扩张概率。该模型依据患者的个人史、疾病史、治疗后的影像信息及其相关特征等因素,预测所有患者在手术后24 H内发生血肿体积扩大的概率。自注意力机制可以捕捉输入序列中的长距离依赖关系。相比于传统的卷积神经网络,它不受局部感受野的限制,能够在整个输入序列上进行全局的关联建模,预测精度达到97.5%。该模型在一定程度可以帮助医护人员判断患者术后的恢复情况。This paper aims at the occurrence of hematoma dilatation after hemorrhagic stroke. A self-attention convolutional neural network model is established to predict its expansion probability. Based on the patient’s personal history, disease history, post-treatment imaging information and related features, the model predicted the probability of hematoma enlargement within 24 H after surgery for all patients. Self-attention mechanisms can capture long-distance dependencies in input sequences. Compared with the traditional convolutional neural network, it is not limited by the local receptive field, and can conduct global correlation modeling on the whole input sequence, and the prediction accuracy reaches 97.5%. To some extent, this model can help medical staff to judge the recovery of patients after surgery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.43.16