通讯网络影响下多车协同驾驶控制策略研究  

Control Strategy of Multi-Vehicle Cooperative Driving on the Influence of the Communication Network

在线阅读下载全文

作  者:戴润佳 刘晓锋[1] 郭蓬 邱洁 

机构地区:[1]天津职业技术师范大学,汽车与交通学院,天津 [2]中汽研(天津)汽车工程研究院有限公司,天津

出  处:《交通技术》2023年第5期394-402,共9页Open Journal of Transportation Technologies

摘  要:随着通讯技术的快速发展,车辆逐渐从自动驾驶的单车智能逐步过渡到多车协同智能控制,由此提升了车辆的运行安全和效率。在多车协同控制方面,现有研究多以理想通讯为主,未考虑实际环境中车车间的通讯干扰问题。本研究考虑通信网络影响,提出了一种基于干扰观测器的PID控制多车协同控制方法,其中,干扰观测器提供估计的干扰信号信息,然后将该信息纳入到PID控制器中,以分析车队运行的稳定性。接着,建立车队行驶场景,采用Matlab/Simulink仿真,仿真结果表明:受干扰车辆速度最大误差从3.56 m/s降低至0.27 m/s,这表明在车车通讯受干扰的情况下,本文提出的方法仍能提高车队运行的智能控制水平。With the rapid development of communication technology, vehicles are gradually transitioning from single-vehicle intelligence in autonomous driving to collaborative multi-vehicle intelligent control, thereby enhancing operational safety and efficiency. In the realm of multi-vehicle colla-borative control, existing research primarily focuses on ideal communication scenarios, over-looking the issue of communication interference between vehicles in real-world environments. This study takes into account the influence of communication networks and proposes a PID con-trol-based multi-vehicle collaborative control method using an interference observer. The inter-ference observer provides estimated interference signal information, which is then incorporated into the PID controller to analyze fleet operation stability. Subsequently, a scenario of fleet driving is established, and Matlab/Simulink simulations are conducted. The simulation results demonstrate that the maximum speed error of the affected vehicles is reduced from 3.56 m/s to 0.27 m/s. This indicates that even in the presence of communication interference between vehicles, the proposed method in this paper can still enhance the level of intelligent control in fleet operation.

关 键 词:车路协同 协同自适应巡航 有损通讯 智能网联汽车 

分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象