检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中车大连机车车辆有限公司,辽宁 大连 [2]大连交通大学,机车车辆工程学院,辽宁 大连 [3]高速列车服役安全关键技术铁路行业重点实验室,大连交通大学,辽宁 大连
出 处:《交通技术》2024年第1期43-51,共9页Open Journal of Transportation Technologies
摘 要:机车车轮的磨耗难以避免,研究车轮磨耗规律,优化镟修策略具有重要意义。本文首先介绍了车轮常见的损伤种类和镟修机理,后建立了轮缘厚度磨耗模型、轮径磨耗模型和基于上述模型利用蒙特卡洛方法提出的一种车轮镟修策略优化方案,以降低车轮全寿命周期的使用成本。在建立磨耗模型过程中,分别采用二次曲线拟合轮缘厚度磨耗速率模型和高斯分布拟合轮径磨耗模型;对136组镟修策略的仿真结果表明,车轮轮缘厚度在28~32.5 mm时车轮的生命周期较长,其中镟修前后轮缘厚度为28.5 mm,31.5 mm时为最优镟修策略,此时车轮仿真预期使用寿命最长、车轮平均使用成本最低。Wear of locomotive wheels is unavoidable, and it is of great significance to study the wheel wear pattern and optimize the re-profiling strategy. This paper firstly introduces the common types of wheel damage and re-profiling mechanism, and then establishes a wheel flange thickness wear model, a wheel diameter wear model and a wheel re-profiling strategy optimization scheme based on the above models using the Monte Carlo method, so as to reduce the cost of wheel life cycle. In the process of establishing the abrasion model, the quadratic curve is used to fit the flange thickness wear rate model and the Gaussian distribution is used to fit the wheel diameter abrasion model, respectively;the simulation results of 136 groups of re-profiling strategies show that, when the thickness of wheel flange before and after re-profiling is 28.5 mm and 31.5 mm, the wheel life cycle is the longest of 75 months, which corresponds to the lowest average cost of 880 yuan/month.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.142.93