检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学理学院,上海
出 处:《运筹与模糊学》2023年第2期724-733,共10页Operations Research and Fuzziology
摘 要:本文把样条基和BP (Back Propagation)神经网络的基本原理结合起来,从而提出了一种具有模糊输入和模糊输出的自适应模糊半参数回归模型。对于所提出的自适应模糊回归模型较好地解释了模型的内在依赖性和模糊性。文中借助截断幂基作为模型的一部分,然后与非参数部分结合构造半参回归模型。利用BP神经网络预测模型中的观测输出值,然后利用LR-型模糊数的交叉验证准则和基于绝对偏差的距离测度。通过求解光滑函数、光滑函数的光滑参数带宽和回归模型的未知系数,实现了构造自适应模糊半参数回归的目标函数优化问题。通过实例并计算模型的拟合度表明所提出的模型的有效性,该策略也显著提高了所提出算法的拟合优度,并为模糊回归模型提供了数值不确定性之间的依赖框架。In this paper, based on spline basis and BP (Back Propagation) neural network, an adaptive fuzzy semi-parametric regression model with fuzzy input and fuzzy output is presented. The intrinsic dependence and fuzziness of the adaptive fuzzy regression model are explained well. In this paper, the truncated spline basis is used as a part of the model, and then combined with the non-parametric part to construct a semi-parametric regression model. The BP neural network is used to predict the observed output values in the model, and then the cross validation criterion of LR-type fuzzy numbers and the distance measure based on absolute deviation are used. By solving the smooth function, the smooth parameter bandwidth of the smooth function and the unknown coefficient of the regression model, the objective function optimization problem of constructing adaptive fuzzy semi-parametric regression is realized. The effectiveness of the proposed model is demonstrated by an example and the fitting degree of the model is calculated. The proposed strategy also significantly improves the goodness of fit of the proposed algorithm, and provides a dependency framework for the fuzzy regression model between the numerical uncertainties.
关 键 词:LR-型模糊数 样条基 自适应模糊回归 BP神经网络 模糊半参数回归
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222