基于S-BCUSUM的回归模型系数变点在线检测  

Online Detection of Regression Model Coefficient Change Points Based on S-BCUSUM

在线阅读下载全文

作  者:王继梅 

机构地区:[1]贵州大学数学与统计学院,贵州 贵阳

出  处:《运筹与模糊学》2023年第2期818-831,共14页Operations Research and Fuzziology

摘  要:随着信息技术的发展,近年来许多领域对在线变点检测方法的需求急剧增加,在线变点检测使人们在观测到越来越多数据时能够连续检测模型是否仍然不变,这在实际数据监控中有重要的应用价值。本文提出基于S-BCUSUM (Sequential Backward Cumulative Sum)监测统计量的封闭式在线变点检测方法用于研究回归模型系数变点的在线监测问题,在一定条件下,给出监测统计量在原假设和备择假设下的渐近性质,并通过渐近分布得到拒绝阈值。模拟结果表明,所提方法能较好地控制检验水平,且有较高的功效和较短的平均运行长度。实例分析表明,所提方法能有效监测北京市PM2.5浓度与空气污染物和气象因素之间的动态关系,这为政府部门的空气质量治理工作提供一定的理论支持,具有一定的应用前景。With the development of information technology, the demand for online change point detection methods has increased dramatically in many fields in recent years. Online change point detec-tion enables people to sequentially the hypothesis that the model still holds as more and more data are observed. It’s widely used in data monitoring in practice. In this paper, a closed-end online change point detection method based on the sequential backward cumulative sum statistic is proposed to investigate the online detection problem for the parameter change in linear regression model. Under certain conditions, the asymptotic properties of the monitoring statistic under the null hypothesis and the alternative hypothesis are proved. In addition, rejection threshold is obtained from the asymptotic null distribution. Simulation results show that the proposed method is able to control the test level well, and has higher power and shorter average run length. The example analysis shows that the proposed method can effectively monitor the dynamic rela-tionship between PM2.5 concentration, air pollutants and meteorological factor in Beijing, which provides a certain theoretical support for the government’s air quality control work and has certain application prospects.

关 键 词:回归模型 变点 在线检测 S-BCUSUM 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象