检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州大学数学与统计学院,贵州 贵阳
出 处:《运筹与模糊学》2023年第5期4849-4855,共7页Operations Research and Fuzziology
摘 要:设是一个符号图,的特征值是其邻接矩阵的特征值。设是的一个特征值,如果存在属于的一个特征向量,使得,则称是的主特征值。图的主特征值为研究图的性质和图的其它不变量都有重要的意义,它在化学等领域中有重要的应用。在的顶点Vi处做切换,相当于改变特征值的特征向量中元素Ui的符号。由于的切换可以改变它的主特征值。因此,给出某些图类的每个特征值都有一无零元素的特征向量具有重要意义。在本文中,我们主要证明了Wenger图的任意特征值对应的特征空间都包含一个无零元素的向量。进一步,我们证明了符号Wenger图在任意地一个顶点处做切换都会使得它的所有特征值变为主特征值。Let be a signed graph and the eigenvalue of be the eigenvalue of its adjacency matrix. An eigenvalue of a signed graph is called a main eigenvalue if it has an eigenvector such that the sum of whose entries is not zero. The main eigenvalue of a graph is of great significance to study the properties of a graph and other invariants of a graph. It has important applications in chemistry and other fields. Switching at the vertex Vi of is equivalent to changing the sign of the elements Ui in the eigenvector of the eigenvalue . The switching of can change its main eigenvalue. Therefore, it is important to show that every eigenvalue of some graph class has a nowherezero eigenvector. In this paper, we mainly prove that the eigenspace corresponding to any eigenvalue of the Wenger graph contains a nowherezero eigenvector. It is further more prove that all eigenvalues of signed Wenger graphs will become the main eigenvalues when switching at any vertex.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.122.53