泰特猜想的延续——四色定理的书面证明  

Tait’s Conjecture Continue—The Proof of the Four-Color Theorem

在线阅读下载全文

作  者:韩文镇 

机构地区:[1]晋城能源有限责任公司,山西 晋城

出  处:《理论数学》2019年第8期949-960,共12页Pure Mathematics

摘  要:四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。本文另辟蹊径,创新提出两色可染连续线、偶数环消除法等新概念,用新的办法证明3-正则平面图线的3着色与极大图点的4着色等价,且证明了3-正则平面图线的3着色是必然可以的,以此给予任意极大图顶点一个普遍四色可染的方法。The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this paper, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is inevitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given.

关 键 词:四色定理 两色可染连续线 3-正则平面 极大图 偶数环消除法 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象